On countable connected Hausdorff spaces in which the intersection of every pair of connected subsets in connected
نویسندگان
چکیده
منابع مشابه
Homogeneous Countable Connected Hausdorff Spaces
In 1925, P. Urysohn gave an example of a countable connected Hausdorff space [4]. Other examples have been contributed by R. Bing [l], M. Brown [2], and E. Hewitt [3]. Relatively few of the properties of such spaces have been examined. In this paper the question of homogeneity is studied. Theorem I shows that there exists a bihomogeneous countable connected Hausdorff space. Theorems II and III ...
متن کاملCountable Connected Spaces
Introduction, Let © be the class of all countable and connected perfectly separable Hausdorff spaces containing more than one point. I t is known that an ©-space cannot be regular or compact. Urysohn, using a complicated identification of points, has constructed the first example of an ©-space. Two ©-spaces, X and X*, more simply constructed and not involving identifications, are presented here...
متن کاملOn fuzzy soft connected topological spaces
In this work, we introduce notion of connectedness on fuzzy soft topological spaces and present fundamentals properties. We also investigate effect to fuzzy soft connectedness. Moreover, $C_i$-connectedness which plays an important role in fuzzy topological space extend to fuzzy soft topological spaces.
متن کاملCountable connected-homogeneous graphs
A graph is connected-homogeneous if any isomorphism between finite connected induced subgraphs extends to an automorphism of the graph. In this paper we classify the countably infinite connectedhomogeneous graphs. We prove that if Γ is connected countably infinite and connected-homogeneous then Γ is isomorphic to one of: Lachlan and Woodrow’s ultrahomogeneous graphs; the generic bipartite graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1998
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171298000635